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Abstract

A partial differential equation based reinitialization method is presented in the framework of a localized level set
method. Two formulations of the new reinitialization scheme are derived. These formulations are modifications of the par-
tial differential equation introduced by Sussman et al. [M. Sussman, P. Smereka, S. Osher, A level set approach for com-
puting solutions to incompressible two-phase flow, J. Comput. Phys. 114 (1994) 146–159] and, in particular, improvements
of the second-order accurate modification proposed by Russo and Smereka [G. Russo, P. Smereka, A remark on comput-
ing distance functions, J. Comput. Phys. 163 (2000) 51–67]. The first formulation uses the least-squares method to explicitly
minimize the displacement of the zero level set within the reinitialization. The overdetermined problem, which is solved in
the first formulation of the new reinitialization scheme, is reduced to a determined problem in another formulation such
that the location of the interface is locally preserved within the reinitialization. The second formulation is derived by sys-
tematically minimizing the number of constraints imposed on the reinitialization scheme. For both systems, the resulting
algorithms are formulated in a three-dimensional frame of reference and are remarkably simple and efficient. The new for-
mulations are second-order accurate at the interface when the reinitialization equation is solved with a first-order upwind
scheme and do not diminish the accuracy of high-order discretizations of the level set equation. The computational work
required for all components of the localized level set method scales with OðN Þ. Detailed analyses of numerical solutions
obtained with different discretization schemes evidence the enhanced accuracy and the stability of the proposed method,
which can be used for localized and global level set methods.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Level set methods have found various applications in which discontinuities in physical properties play an
essential role and can be described by the propagation of an interface. Recent applications in computational
physics concern turbulent premixed combustion [1,2], two-phase flows [3,4], and crystal growth [5]. In com-
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bustion, the idea of tracking a propagating surface to theoretically describe the front of a premixed flame was
introduced by Markstein [6]. Later the derived equation became known as the G equation, which is formally
equivalent to the level set equation. The numerical foundation of level set methods was established by Osher
and Sethian [7].

The interface is commonly represented by the zero level set /0 bounding a region Xþ � Rn and separating
X� � Rn from Xþ. It is embedded in the n-dimensional scalar level set function / ¼ /ðx; tÞ,
/0 ¼ fðx; tÞ : /ðx; tÞ ¼ 0g; x 2 Rn; t 2 Rþ: ð1Þ

For n ¼ 3, let the components of the coordinate vector be denoted by x ¼ ðx; y; zÞT. The level set function /
can be any Lipschitz continuous function with the properties
/ > 0 for x 2 Xþ;

/ ¼ 0 for x 2 /0;

/ < 0 for x 2 X�:

8><>: ð2Þ
The motion of the zero level set /0 is governed by the extension velocity f ¼ fðx; tÞ,

f ¼ vþ sn ð3Þ
with the components f ¼ ðfx; fy ; fzÞT. It comprises the advection by an underlying flow velocity field v ¼ vðx; tÞ
and the propagation of the front relative to the flow field in the normal direction to /0 by s. The normal direc-
tion is defined by the outward normal vector
n ¼ � $/
j$/j ð4Þ
pointing into X�, where $ ¼ ðox; oy ; ozÞT denotes the vector operator of spatial derivatives. The local speed of
propagation s may be induced by several effects such as curvature [7] and, in the case of premixed combustion,
the flame propagation into the unburnt gas. A great advantage of level set methods is geometric quantities
such as the curvature
C ¼ $ � n ð5Þ

to be readily obtained. The fundamental level set equation can be written
ot/þ f � $/ ¼ 0 ð6Þ
or in terms of the normal velocity fn ¼ �f � n

ot/þ fnj$/j ¼ 0: ð7Þ
At fn ¼ 1, Eq. (7) is a Hamilton–Jacobi equation. Besides the accurate and efficient solution of the Hamilton–
Jacobi type Eqs. (6) and (7), for which methods are reported in the literature [8,9], the reinitialization of the
level set function / is an important issue in level set methods having a substantial impact on the accuracy and
the efficiency of the overall solution method.

1.1. Reinitialization of the level set function

In general, the formulation of Eq. (6) permits an arbitrary, sufficiently smooth function / with the prop-
erties given in (2). However, solving Eq. (6) moves the zero level set /0 correctly, but may perturb the level
set function near /0 [10,11], i.e., it may cause very large or small gradients. To alleviate this difficulty, it
was proposed in [10,11] to replace the arbitrary level set function by a well behaved function and initialize
/ into a signed distance function, which is the unique viscosity solution of the Eikonal equation
j$/j ¼ 1 ð8Þ

anchored at /0. However, once initialized into such a signed distance function, the level set function / usually
does not retain this property under the evolution of Eq. (6) and needs to be reinitialized at regular time
intervals. The most straightforward but inefficient reinitialization technique is to directly compute the mini-
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mum distance of each point from the zero level set, requiring a computational work of the order OðN 2Þ, with
N being the number of cells. A more efficient and simpler approach is to use a partial differential equation to
iteratively reinitialize the level set function. Sussman et al. [10] reformulate the Eikonal equation (8) as an evo-
lution equation in artificial time s
os/
m þ Sð~/Þðj$/mj � 1Þ ¼ 0; ð9Þ
which can be rewritten as a nonlinear hyperbolic equation
os/
m þ wð/mÞ � $/m ¼ Sð~/Þ; ð10Þ
where wð/mÞ ¼ Sð~/Þ $/m

j$/mj and the superscript m denotes the discrete pseudo-time step. The quantity Sð~/Þ is a
smoothed sign function of the perturbed level set function ~/ ¼ ~/ðx; s ¼ 0Þ being defined as
Sð~/Þ ¼
~/ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~/2 þ �2

q ; ð11Þ
where � is a smoothing parameter. Analytically, Eqs. (9) and (10) yield for s!1 the unique viscosity solution
of the Eikonal equation correcting the perturbed level set function ~/ to become a signed distance function and
keep the zero level set invariant because Sð~/0Þ ¼ 0. However, since in a discrete representation of ~/ hardly any
computational points coincide with ~/0, the location of the zero level set has to be defined by interpolating
neighboring points. It has been emphasized by several authors [4,12] that solving the discretized version of
Eq. (9) considerably displaces the zero level set and thus may lead to substantial errors due to the reinitializa-
tion. A number of approaches were taken to remedy this problem [4,12]. It was pointed out in [8] that the
modification proposed in [4] prevents a steady-state solution of the reinitialization equation (9) and leads
to oscillations of the zero level set within the reinitialization procedure. It will be shown in this paper that
the original second-order method of Russo and Smereka [12] also produces oscillations of the zero level set.

1.2. Objectives

Ultimately, numerical methods used for the reinitialization of the level set function should be designed
based on the following criteria:

(1) The /0 iso-surface is kept invariant by the reinitialization.
(2) The level set function satisfies a signed distance function, i.e., j$/j ¼ 1, which is anchored at /0.
(3) The schemes can be efficiently applied to large-scale problems.

Regarding these criteria two formulations of a new partial differential equation based reinitialization
scheme are derived. The first formulation is based on the least-squares method which minimizes the unwanted
displacement of the interface within the reinitialization. The overdetermined problem, which is solved in this
first formulation of the reinitialization, is reduced to a determined problem in a second formulation such that
the location of the interface is preserved within the reinitialization. The second formulation is derived by min-
imizing the number of constraints imposed on the reinitialization scheme in the first formulation. The new
formulations are modifications of the differential equation based methods introduced in [10] and modified
in [12] and are remarkably simple and efficient.

This paper is organized as follows. After a brief description of the localized level set method in Section 2,
two formulations of a new reinitialization method are derived in Section 3. Results of two-dimensional com-
putations are given in Section 4, before the findings of the present paper are summarized in Section 5.

2. Level set formulation

For the sake of a simple description of the algorithms, a computational domain X is considered with a cell-
centered discretization on a uniform mesh using a constant spacing Dx ¼ Df; f ¼ fx; y; zg, in the x, y and z

direction, respectively. All methods described below are also suitable for curvilinear coordinates. The cells
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in X are denoted by Ci;j;k, where the subscripts indicate their discrete location in the computational grid. Fur-
thermore, the subset C of cells which are adjacent to the zero level set is defined by
Fig. 1.
cell cen
C.
C ¼ Ci;j;k : Pi;j;k
i0;j;k/ 6 0

� �
_ Pi;j;k

i;j0 ;k/ 6 0
� �

_ Pi;j;k
i;j;k0/ 6 0

� �n o
ð12Þ
for any combination of integers i0 2 fiþ 1; i� 1g; j0 2 fjþ 1; j� 1g; k0 2 fk þ 1; k � 1g, with Pi;j;k
i0 ;j;k/ ¼

/i;j;k/i0 ;j;k. That is, all cells in C are located within a distance Dx from the zero level set, Fig. 1.
The computational costs of solving the level set Eq. (6) can be reduced by orders of magnitude when the

level set method is localized, i.e., a solution is sought only in a small region around the zero level set, while
all other areas are assigned a constant value indicating the location in Xþ or X� [13,14]. In this paper, we con-
sider a localized computational domain X/ � X moving along with the zero level set. All cells outside X/ are
discarded and the level set algorithms are localized as proposed in [13], such that the computational costs of
the overall level set method scale with OðN Þ. Let B designate the subset of cells Ci;j;k which are used in the
localized solution of Eq. (6) forming a narrow band around /0 bounded by the boundary cells bCi;j;k 2 oB.
Let us furthermore define oB \ X/ ¼ ; such that boundary cells are outside of and adjacent to X/, Fig. 1.
B is created using an efficient marching algorithm, which is based on neighbor relations. The Cartesian flow
solver underlying the present level set method is based on a hierarchical quadtree/octree data structure such
that all neighbor information can be directly accessed [15]. The narrow band B is regenerated before each
reinitialization step, while the subset C is updated after each time step.

2.1. Discretization

The level set equation (6) is integrated in time with a 3-step third-order accurate TVD Runge–Kutta scheme
[16] denoted by RK3,
/ð0Þ ¼ /w;

/ðkÞ ¼ ak/
ð0Þ þ bk/

ðk�1Þ � ckDtLð/ðk�1ÞÞ;
/wþ1 ¼ /ðNÞ;

8><>: ð13Þ
where N ¼ 3 and the coefficients a ¼ ð0; 3
4
; 1

3
Þ, b ¼ ð1; 1

4
; 2

3
Þ and c ¼ ð1; 1

4
; 2

3
Þ are used. The superscript k denotes

the Runge–Kutta step, while the superscript w counts the time steps Dt. The operator Lð/Þ denotes the numer-
ical approximation of the term f � $/ in Eq. (6), which is specified in the following. To spatially discretize the
level set equation, unlimited third- and fifth-order upstream central schemes denoted by UC3 and UC5 are
B and X/ in the localized level set method. In this example, B extends four cells on either side of the zero level set. Circles denote
ters of internal and boundary cells in B; shaded cells are boundary cells in oB; X/ consists of internal cells only; dots denote cells in
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used, respectively. Both schemes are investigated in [8] and shown to give excellent results. Using UC5 the
discrete upwind-biased spatial derivatives read in the x direction
Dx;L
i;j;k ¼ 1

60Dx

�
� 2/i�3;j;k þ 15/i�2;j;k � 60/i�1;j;k þ 20/i;j;k þ 30/iþ1;j;k � 3/iþ2;j;k

�
;

Dx;R
i;j;k ¼ 1

60Dx

�
2/iþ3;j;k � 15/iþ2;j;k þ 60/iþ1;j;k � 20/i;j;k � 30/i�1;j;k þ 3/i�2;j;k

�
;

8>>><>>>: ð14Þ
where ox/jL=R
i;j;k ¼ Dx;L=R

i;j;k þOðD5
xÞ. With UC3, the derivatives in the x direction are approximated by
Dx;L
i;j;k ¼ 1

6Dx

�
/i�2;j;k � 6/i�1;j;k þ 3/i;j;k þ 2/iþ1;j;k

�
;

Dx;R
i;j;k ¼ 1

6Dx

�
� /iþ2;j;k þ 6/iþ1;j;k � 3/i;j;k � 2/i�1;j;k

�
;

8>>><>>>: ð15Þ
where ox/jL=R
i;j;k ¼ Dx;L=R

i;j;k þOðD3
xÞ. Likewise derivatives with respect to the y and z direction are obtained by

exchanging the respective subscripts. Let us define Dx;�
i;j;k � Dx;L

i;j;k � Dx;R
i;j;k and introduce the vector operator

D�i;j;k ¼ ðD
x;�
i;j;k;D

y;�
i;j;k;D

z;�
i;j;kÞ

T. Then, Lð/Þ can be computed by
Lð/i;j;kÞ ¼
1

2

X
f

jffjef

 !
�Dþi;j;k þ f �D�i;j;k

( )
; f ¼ fx; y; zg; ð16Þ
where the summation is over all spatial directions, ef is the unit vector in the f direction and f is evaluated on
the cell Ci;j;k.

Localized level set methods are known to have stability problems at the boundary [13], which can be
avoided by introducing the Heaviside function
cðxÞ ¼
1 if x 2 X/;

0 otherwise

�
ð17Þ
to obtain
ot/þ cðxÞf � $/ ¼ 0 ð18Þ
in conjunction with a reduced-order discretization near oB. Unless the UC5 stencil lies completely in B, UC3 is
used near oB or a first-order upwind scheme if the UC3 stencil contains a cell which is not in B. A likewise
reduction applies when UC3 is used as base scheme. Using Eq. (17), cells on oB are not updated, such that
the localized solution of the level set function evolves based on data in B only.

A more sophisticated form of the cut-off function (17) is proposed in [13]. However, the simple formulation
(17) in conjunction with the reduced-order discretization near oB performed well in all test cases presented in
Section 4.

3. Reinitialization of the level set function

A major difficulty in partial differential equation based reinitialization methods is to avoid the displace-
ment of the zero level set within the reinitialization. It is evident that finite-order approximations of these
equations cause these displacements in the general multi-dimensional case, if a solution to j$/j ¼ 1 is
sought without further constraints. A major drawback of the differential reinitialization equation (9) is that
the zero level set is considerably displaced and that this displacement may increase with an increasing num-
ber of iterations. Russo and Smereka [12] improve the original Hamilton–Jacobi formulation (9) by Suss-
man et al. [10] by discretizing Eq. (9) such that the stencils use information of only one side of the zero
level set. Furthermore, it is shown that, unlike in the original formulation, the unwanted displacement of
the zero level set in the modified reinitialization scheme is independent of the number of iterations. Their
modified formulation reads
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/mþ1
i;j;k ¼

/m
i;j;k � Ds

Dx
sgnð~/i;j;kÞj/m

i;j;kj � di;j;k

� �
if Ci;j;k 2 C;

/m
i;j;k � Ds sgnð~/i;j;kÞðj$/m

i;j;kj � 1Þ otherwise;

8<: ð19Þ
where ~/ denotes the level set function before the reinitialization, i.e., ~/ ¼ /m¼0 and
di;j;k ¼
~/i;j;k

½ox
~/i;j;k�2 þ ½oy

~/i;j;k�2 þ ½oz
~/i;j;k�2

� �1=2
ð20Þ
is the target value of the level set function on Ci;j;k 2 C approximating the signed distance function. As noted in
[12], an alternative to iteratively determining the level set function on the cells in C is to directly update
/i;j;k ¼ di;j;k 8Ci;j;k 2 C. The iterative and the direct update were tested in the present investigation and no dif-
ference in the stability and the rate of convergence was found, which is why the direct update is used in this
paper. In both cases, the CFL stability condition requires Ds < Dx. A central difference scheme is proposed in
[12] to evaluate the discrete derivatives ½of

~/i;j;k�; f ¼ fx; y; zg; in Eq. (20). As indicated in Fig. 2, this central
scheme results in oscillations of the interface location in the solutions, which can be stabilized using an upwind
discretization across the zero level set instead. This discretization reads in general form e.g. for the x direction
½ox
~/i;j;k� ¼

~/þði;j;kÞ � ~/�ði;j;kÞ

max xþði;j;kÞ � x�ði;j;kÞ; �x

� � ; ð21aÞ
where �x ¼ Dx

1000
and for n ¼ f~/; xg
n�ði;j;kÞ ¼
ni;j;k if Ci�1;j;k 62 C _ ððAÞ ^ ðBÞÞ;
ni�1;j;k otherwise;

�
ð21bÞ
where the conditions ðAÞ and ðBÞ read with Dþi;j;k/ ¼ /iþ1;j;k � /i;j;k and D�i;j;k/ ¼ /i;j;k � /i�1;j;k
ðAÞ if Piþ1;j;k
i�1;j;k/ < 0

� �
^ jD�i;j;k/þ �xj < jD�i;j;k/j
� �

;

ðBÞ if Dþi;j;k/D�i;j;k/ < 0
� �

_ Pi�1;j;k
i�2;j;k/ < 0

� �
_ Piþ1;j;k

iþ2;j;k/ < 0
� �

:

8><>: ð21cÞ
The conditions ðAÞ and ðBÞ are formulated to take into account cases in which multiple interfaces are close to
each other and about to coalesce, see e.g. problem 3 in Section 4.2.3. In most other scenarios, either condition
ðAÞ or ðBÞ is not fulfilled such that Eq. (21) reduces to a simple upwind/center difference scheme utilizing only
cells in C. Discretization schemes for the y and the z directions are obtained by exchanging the corresponding
RSC, UC5/RK3, t=40
RSU, UC5/RK3, t=40

RSC, UC5/RK3, t=2.7

a b

Comparison of UC5=RK3 solutions using the reinitialization schemes RSC and RSU: (a) rotation of a slotted disk; (b) propagation
rcular zero level set using RSC. The level set function is reinitialized after each time step. The solutions clearly illustrate the kinks
ed by RSC, while RSU is stable (see also Fig. 15). The thin lines show the initial zero level set. Details of the test cases are given in
s 4.2.1 and 4.2.2.



Fig. 3. Illustration of the stencils to discretize Eq. (20) for different reinitialization schemes: (a) x–y plane at z ¼ k; (b) z–y plane at x ¼ i.
Circles denote cell centers; the diamond-shaped areas surrounded by dashed lines illustrate the central difference stencil used in [12] (RSC)
for the cell marked by the shaded circle; the upwind discretization stencil, Eq. (21), used in RSU, CR-1 and CR-2 is given by the shaded
areas.
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subscripts. In the following, the Russo–Smereka scheme (19) is denoted by RSC when used in conjunction
with a central discretization scheme and is denoted by RSU when discretized by the upwind scheme given
by Eq. (21). In Fig. 3, the stencils for the RSC and RSU schemes are illustrated.

3.1. Constrained reinitialization scheme

We now turn to present two formulations of a new reinitialization scheme which are derived by explicitly
imposing the zero-displacement constraint on the zero level set. Whereas they are formally closely connected,
the philosophy behind these formulations is different. The formulations are modifications of the scheme intro-
duced by Sussman et al. [10], Eq. (9) and do improve the modification of this scheme proposed by Russo and
Smereka [12]. The first formulation denoted by CR-1 is based on the least-squares method and is formulated
to minimize the displacement of the zero level set within the reinitialization. The second formulation denoted
by CR-2 is derived by systematically minimizing the number of constraints imposed on the scheme CR-1. The
overdetermined problem which is solved in CR-1 is reduced to a determined problem such that the location of
the interface can be preserved within the reinitialization.

Considering a cell in C, the difference between the formulations can be briefly summarized as follows. In the
first formulation, the level set function on this cell is determined such that the accumulated displacement of the
zero level set at all points which can be identified by linear interpolation in the Cartesian space directions is
minimized. In the general multi-dimensional case, multiple such points exist such that the zero level set cannot
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be restrained. The essence of the second formulation is to represent this cloud of points by a single point in /0,
to which the zero level set can be anchored. The level set function on the considered cell is in the second for-
mulation determined such that this single point remains invariant.

3.1.1. Formulation CR-1

In general, reinitialization methods can be judged by their capability to

	 modify the level set function such that j$/j ¼ 1 is satisfied,
	 keep the /0 iso-surface invariant.

While the first criterion is relevant for all cells in B, the second condition is important only for the cells in C.
Both criteria can be fulfilled analytically, but one usually faces an overdetermined problem in the discrete ver-
sion of the level set function in multi-dimensional space such that a solution which exactly meets both criteria
cannot be obtained. Hence, for the cells in C, a reinitialization scheme which minimizes the deviation from the
above stated criteria is sought. Using linear interpolation to determine the location of the zero level set, these
errors can formally be written
ðei;j;kÞ0 ¼ ½ox/i;j;k�
2 þ ½oy/i;j;k�

2 þ ½oz/i;j;k�
2

� �1=2

� 1;

ðei;j;kÞa ¼ /i;j;k � ri;j;k
ði;j;kÞa

/ði;j;kÞa ; Cði;j;kÞa 2 Si;j;k;

8<: ð22Þ
where ri;j;k
ði;j;kÞa

¼
~/i;j;k

~/ði;j;kÞa
and Si;j;k contains the neighbor cells of Ci;j;k across the /0 iso-surface, i.e.,
S i;j;k ¼ fCði;j;kÞa : /i;j;k/ði;j;kÞa < 0g: ð23Þ
The quantity ðei;j;kÞ0 is the deviation from j$/j ¼ 1 and ðei;j;kÞa can be considered a measure of the interface
displacement on the line connecting the cell centers of Ci;j;k and Cði;j;kÞa . Furthermore, let Mi;j;k denote the num-
ber of cells in Si;j;k such that a ¼ f1; . . . ;Mi;j;kg. Summing up the squared errors weighted by the quantity da0

yields the least-squares function L
Li;j;k ¼
XMi;j;k

a0¼0

da0 ðei;j;kÞ2a0 : ð24Þ
In the case depicted in Fig. 4, Mi;j;k ¼ 3 and S i;j;k ¼ fCi�1;j;k;Ci;j�1;k;Ci;j;k�1g. To find the minimum error, Li;j;k is
differentiated with respect to the Mi;j;k þ 1 unknowns, the derivatives are set 0 and the resulting system of Mi;j;k þ 1
equations is solved. For example, the equation resulting from differentiating with respect to /i;j;k reads
o/i;j;k
Li;j;k ¼ o/i;j;k

d0ðei;j;kÞ20 þ 2
XMi;j;k

a¼1

daðei;j;kÞa

 !
¼ 0: ð25Þ
In Eq. (25) and the corresponding equations for the derivatives with respect to /ði;j;kÞa ; a ¼ f1; . . . ;Mi;j;kg, the
first term on the right-hand side, i.e., the derivative of ðei;j;kÞ20, is nonlinear such that Eq. (25) and the corre-
sponding equations are difficult to solve analytically. Iterative solution schemes can be derived but introduce
complexity. However, provided the level set function has been reinitialized via Eq. (20) into a signed distance
function in C, ðei;j;kÞ0 may be assumed very small and the weighting
da0 ¼
0; a0 ¼ 0;

1; a0 P 1

�
ð26Þ
can be introduced into Eq. (25), which then readily allows to determine /i;j;k. To be consistent with Eq. (19),
this equation is written in terms of the signed distance
~di;j;k ¼
1

Mi;j;k

XMi;j;k

a¼1

ri;j;k
ði;j;kÞa

dði;j;kÞa ; ð27Þ
which can be introduced into the scheme (19) by setting di;j;k ¼ ~di;j;k or used to directly update the level set function
by /i;j;k ¼ ~di;j;k. Since Eq. (27) is an equation for the signed distance on the cell Ci;j;k, there is no need to precom-



a

b

Fig. 4. Illustration of the /0 iso-surface in a three-dimensional Cartesian frame of reference: (a) x–y plane at z ¼ k; (b) z–y plane at x ¼ i.
Circles denote cell centers; shaded circles denote the set R, i.e., those cells to which step 1 is applied in CR-1 and CR-2. Arrows pointing
towards Ci;j;k marked by the filled circle indicate the set Si;j;k containing the cells, which are used in Eqs. (27) and (36), respectively.
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pute this distance using Eq. (20). Considering the example depicted in Fig. 4, the signed distance function d needs
to be precomputed only on the cells in Si;j;k. Hence, a 2-step correction scheme is obtained, which in the first step
computes the signed distance function on the cells in S i;j;k using Eq. (20) and in the second step uses Eq. (27) to
compute ~di;j;k on all other cells in C. Both steps are performed only once and sequentially, such that the dði;j;kÞa
required in Eq. (27) are available from the first step and Eq. (27) is thus explicit. Hence, no iterations between
the two steps are necessary to obtain an estimate of di;j;k on cells at the zero level set.

As illustrated in Fig. 5 for the one-dimensional case, applying the second step to Ci;j;k gives exactly the same
result as reinitializing the level set function using Eqs. (20) and (21) on all cells in C. In this limiting case it can
thus be considered a redistancing constraint. In the general multi-dimensional case, the level set function is
allowed to deviate from j$/j ¼ 1 by the introduction of d0 ¼ 0. Then, the second reinitialization step via
Eq. (27) seeks to minimize the displacement of the zero level set. However, the results of our numerical exper-
iments presented in Section 4 evidence that the first step, i.e., the reinitialization of the level set function into a
signed distance function on only one side of the zero level set, is sufficient to obtain a close approximation of
the signed distance function on all cells if Eq. (27) is used on the other side of the interface. In fact, the approx-
imation of the signed distance function using CR-1 is as accurate as if the reinitialization into a signed distance
function is explicitly performed on all cells via the scheme RSU.

Preliminary numerical experiments suggest that the cells on which steps 1 and 2 are executed should be
determined according to the local curvature. Essentially, the sets Si;j;k should contain as many cells as possible.
Accordingly, let C be divided into two subsets R and C such that



Fig. 5. Illustration of the 2-step correction in the schemes CR-1 and CR-2 for the one-dimensional case: (a) step 1: reinitialization of
/i ¼ di, Eqs. (20) and (21); (b) step 2: reinitialization of /i�1 ¼ ~di�1 ¼ ri�1

i di, Eqs. (27) and (36), using explicitly the constraint that /0 ¼ ~/0.
For the one-dimensional case, step 2 is equivalent to executing step 1 for /i�1 and /0 ¼ ~/0.
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R ¼ fCi;j;k 2 C : Ci;j;k
~/i;j;k > 0 _ ðCi;j;k ¼ 0 ^ ~/i;j;k > 0Þg;

C ¼ fC nRg;

(
ð28Þ
where the curvature Ci;j;k, Eq. (5), is computed on the cell Ci;j;k. Then, R ¼
S
Si;j;k and the overall reinitializa-

tion scheme CR-1 can be summarized as follows:

Step 1. Compute the signed distance function on all cells in R using Eqs. (20) and (21).
Step 2. Apply Eq. (27) and set di;j;k ¼ ~di;j;k on all cells in C.
Step 3. Update /i;j;k ¼ di;j;k on all cells in C.
Step 4. Solve the reinitialization Eq. (9) to steady state on Ci;j;k 2 fB n Cg.

This scheme is very simple and of comparable computational costs as solving Eq. (9) for all cells or using
the scheme (19). It updates the level set function on the cells in C in steps 1-3 before iteratively reinitializing all
other cells in B using the original Eq. (9) proposed in [10]. Using a first-order spatial discretization and for-
ward Euler integration in pseudo-time s, Eq. (9) reads in its discretized form
/mþ1
i;j;k ¼ /m

i;j;k � Ds
~/i;j;k

j~/i;j;kj
ðGðDþf /m

i;j;k;D
�
f /m

i;j;kÞ � 1Þ; f ¼ fx; y; zg; ð29aÞ
where the pseudo-time step is Ds ¼ Dx

4
and G is the Godunov Hamiltonian
Gða; b; c; d; e; f Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxða2

þ; b
2
�Þ þmaxðc2

þ; d
2
�Þ þmaxðe2

þ; f 2
�Þ

q
if ~/i;j;k P 0;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

maxða2
�; b

2
þÞ þmaxðc2

�; d
2
þÞ þmaxðe2

�; f
2
þÞ

q
if ~/i;j;k < 0

8><>: ð29bÞ
with aþ ¼ maxða; 0Þ and a� ¼ minða; 0Þ and
a � D�x /i;j;k ¼
/i;j;k � /i�1;j;k

Dx

; b � Dþx /i;j;k ¼
/iþ1;j;k � /i;j;k

Dx

;

c � D�y /i;j;k ¼
/i;j;k � /i;j�1;k

Dx

; d � Dþy /i;j;k ¼
/i;jþ1;k � /i;j;k

Dx

;

e � D�z /i;j;k ¼
/i;j;k � /i;j;k�1

Dx

; f � Dþz /i;j;k ¼
/i;j;kþ1 � /i;j;k

Dx

:
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Eq. (29) constitutes a consistent and monotone discretization scheme of Eq. (9), which converges to the unique
viscosity solution of the Eikonal equation [10].

3.1.2. Formulation CR-2
In this section, the derivation of the formulation CR-2 is presented. We start by executing step 1 of CR-1,

i.e., the level set function is reinitialized using Eqs. (20) and (21) on all cells in R. Step 2 of CR-1 is reformu-
lated to give a relation which locally anchors the position of the zero level set. Consider again the cells Si;j;k

depicted in Fig. 4, which are reinitialized into a signed distance function in step 1. The center points of these
cells span a polygon, which is depicted as the hatched triangle in Fig. 6. The perturbed level set function and
the signed distance function can be interpolated to the center of this polygon using the second-order accurate
interpolation operators I ði;j;kÞ~/ and I ði;j;kÞd given by
Fig. 6.
proble
determ
marks
I ði;j;kÞ~/ ¼
1

Mi;j;k

XMi;j;k

a¼1

~/ði;j;kÞa ð30aÞ
and
I ði;j;kÞd ¼
1

Mi;j;k

XMi;j;k

a¼1

dði;j;kÞa ; ð30bÞ
i.e., I ði;j;kÞ~/ and I ði;j;kÞd evaluate the average of the corresponding variable values on the cells in Si;j;k. Using the
interpolated values, we can show that the location of the zero level set remains locally fixed if the reinitializa-
tion scheme preserves the relation
di;j;k

I ði;j;kÞd
¼

~/i;j;k

I ði;j;kÞ~/
: ð31Þ
Consider the location of ~/0 before the reinitialization and the location of /0 after the reinitialization on the
line connecting xi;j;k corresponding to the cell center of Ci;j;k and xSi;j;k corresponding to the center point of the
polygon spanned by Si;j;k. Furthermore, let Dx be Dx ¼ xSi;j;k � xi;j;k. Using linear interpolation, the locations ~x0

of ~/0 and x0 of /0 can be computed by
~x0 ¼ xi;j;k þ Dx

~/i;j;k

~/i;j;k � I ði;j;kÞ~/i;j;k

ð32Þ
and
Illustration of the determined problem in the scheme CR-2: (a) three-dimensional view of the problem; (b) reduced determined
m. Circles denote cell centers, the shaded circle denotes the cell Ci;j;k . The hatched areas illustrate the stencil of cells used to
ine di;j;k via Eq. (36). The square denotes the center of this stencil, to which d and / are interpolated via Eq. (30). The open diamond
the point to which the /0 iso-surface is anchored by the scheme.
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x0 ¼ xi;j;k þ Dx

di;j;k

di;j;k � I ði;j;kÞdi;j;k
: ð33Þ
The condition x0 ¼ ~x0 is satisfied if
1

1� Iði;j;kÞ ~/
~/i;j;k

¼ 1

1� Iði;j;kÞd

di;j;k

; ð34Þ
which is exactly fulfilled by Eq. (31).
Since I ði;j;kÞ~/ is determined before and I ði;j;kÞd is determined after step 1, di;j;k can be computed by rearrang-

ing Eq. (31) to obtain
di;j;k ¼ ~/i;j;k
I ði;j;kÞd

I ði;j;kÞ~/
; ð35Þ
which can be rewritten by substituting I ði;j;kÞ~/ and I ði;j;kÞd and using ~di;j;k to be consistent with Eq. (27),
~di;j;k ¼ ~/i;j;k

PMi;j;k

a¼1 dði;j;kÞaPMi;j;k

a¼1
~/ði;j;kÞa

: ð36Þ
It is clear that Eq. (36) exactly fulfills the constraint (31), see Fig. 5, such that the /0 iso-surface is fixed at the
location of its intersection with the line connecting xi;j;k and xSi;j;k , which is depicted as the open square in
Fig. 6(b). As Eq. (27), Eq. (36) can be introduced into the scheme (19) by setting di;j;k ¼ ~di;j;k or used to directly
update the level set function by /i;j;k ¼ ~di;j;k. Similar to CR-1 a 2-step correction scheme is obtained with Eq.
(20) applied in the first step and subsequently Eq. (36) used in the second step. As in CR-1, both steps are
performed only once and sequentially such that no iterations between the two steps are necessary to obtain
an estimate of di;j;k on cells at the zero level set. Using the subsets defined in Eq. (28), the scheme CR-2
can hence be summarized as follows:

Step 1. Compute the signed distance function on all cells in R using Eqs. (20) and (21).
Step 2. Apply Eq. (36) and set di;j;k ¼ ~di;j;k on all cells in C.
Step 3. Update /i;j;k ¼ di;j;k on all cells in C.
Step 4. Solve Eq. (29) to steady state on Ci;j;k 2 fB n Cg.

Note the scheme holds for arbitrary Mi;j;k even though the derivation above cannot be illustrated geomet-
rically if the cell centers of Si;j;k are not located within the same plane, which is the case for Mi;j;k > d, where d

is the number of space dimensions.
3.1.3. Discussion of CR-1 and CR-2

The displacement of the zero level set caused by the constrained reinitialization scheme is independent of
the number of iterations performed to solve the reinitialization equation. The formulations CR-1 and CR-2
differ in step 2, while steps 1, 3 and 4 are alike. Steps 3 and 4 can be replaced by solving Eq. (19) using the
first-order upwind discretization given above with di;j;k computed in steps 1 and 2. This yields the same
accuracy.

Referring to CR-1, Eq. (27) can be generally reformulated to give a correction Ddi;j;k of di;j;k, provided di;j;k

has been computed using Eqs. (20) and (21), i.e., the first step is executed on all cells in C. Obviously, this
yields exactly the same result as the procedure described above.

A further modification is to distribute the correction term to Ci;j;k and Si;j;k, such that the corrections
1

Mi;j;kþ1
Ddi;j;k and � 1

Mi;j;kþ1
Ddi;j;k are applied to Ci;j;k and Si;j;k, respectively. However, numerical tests reveal that

this distributed correction procedure produces oscillations and does not improve the accuracy of the proposed
scheme.
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4. Results

We now turn to present results of numerical experiments using the novel methods. First, the order of the
schemes is investigated in a static reinitialization test case, followed by the solid-body rotation of a slotted disk
and propagation test cases including topology changes, which are considered to investigate the accuracy and
stability of the novel reinitialization schemes.

4.1. Order of the reinitialization schemes

The order of the proposed reinitialization schemes is investigated in a test case similar to that used in [12].
Let the level set function be initialized as
~/ðxÞ ¼ gðxÞðr �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
Þ; ð37aÞ
which defines for gðxÞ ¼ 1 an infinite number of concentric circular level sets with a zero level set of radius r.
Retaining the zero level set, a perturbed level set function with small and large gradients is obtained using
gðxÞ ¼ 0:1þ ðx� rÞ2 þ ðy � rÞ2: ð37bÞ

Fig. 7 depicts the level set function for r ¼ 3 after being reinitialized for a different number of iterations using
CR-2 on a 1282 cell grid. Note, the cells in C are updated before the first iteration and remain unchanged
thereafter.

To evaluate the order of the different schemes, the L1 norm of the difference e1 between the exact signed
distance function and the computed function is determined at the zero level set by
e1 ¼ kD� /k1 ¼
1

N C

X
C

jDi;j � /i;jj; ð38Þ
where Di;j ¼ r �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

i;j þ y2
i;j

q
is the exact signed distance function and N C denotes the number of cells in C. The

results are summarized in Tables 1 and 2 and plotted in Fig. 8. As expected, all schemes are second-order accu-
rate at the zero level set. The results furthermore indicate a similar performance of the reinitialization schemes
RSU, CR-1 and CR-2 for this problem, which, however, is an artifact of the test case since the initial per-
turbed level set function is distributed very smoothly. The significantly enhanced accuracy and stability of
the constrained reinitialization schemes is demonstrated in Section 4.2, where level set advection and propa-
gation test cases are presented.
4.2. Advection and propagation test cases

In this section solutions of numerical experiments showing the stability and the enhanced accuracy of the
novel methods are discussed. For all computations the localized level set method is used. The narrow band B
extends seven cells on each side of the zero level set. Solutions on wider bands have been computed. They show
that all presented solutions are almost independent of the bandwidth. The level set function is reinitialized
after each time step and Eq. (29) is converged to machine accuracy. The purpose is to demonstrate the stability
and enhanced accuracy of the proposed methods even when the reinitialization is performed very frequently
and that the reinitialization procedure is independent of the number of iterations performed on Eq. (29). Note,
Oð1Þ–Oð10Þ iterations are usually sufficient to solve Eq. (29) when the level set function is reinitialized after
each time step.
4.2.1. Problem 1: rotation of a slotted disk

First, the rotation of a slotted disk [17] is considered. A slot of width 5 and length 25 is cut out of a disk
centered at ðx; yÞ ¼ ð50; 75Þ with a radius r ¼ 15 in a computational domain X : ½0; 100� 
 ½0; 100�. The slotted
disk is rotated under a velocity field ðu; vÞ ¼ ðp=314ð50� yÞ; p=314ðx� 50ÞÞ, such that a full revolution is
performed at t ¼ 628. A CFL number of 1:28 is used, which corresponds to a time step Dt ¼ 1 on a 2562 cell
grid.



Fig. 7. Reinitialization of the level set function initialized by Eq. (37) into a signed distance function using CR-2 in a computational
domain X : ½�5; 5� 
 ½�5; 5� discretized by 1282 cells: (a) before the reinitialization; (b) after 10 iterations; (c) after 50 iterations; (d) after
150 iterations. Contours are evenly spaced by 0:5 and plotted in the range / ¼ f�3; . . . ; 3g. The colors correspond to the value of the level
set function /.

Table 1
Convergence of the reinitialization scheme proposed by Russo and Smereka [12] using different discretizations

Dx e1: RSC Order: RSC e1: RSU Order: RSU

10/64 2:000
 10�3 – 1:202
 10�3 –
10/128 4:958
 10�4 2.0 2:974
 10�4 2.0
10/256 1:211
 10�4 2.0 7:671
 10�5 2.0

The level set function is initialized according to Eq. (37).

Table 2
Convergence of the constrained reinitialization schemes CR-1 and CR-2

Dx e1: CR-1 Order: CR-1 e1: CR-2 Order: CR-2

10/64 1:273
 10�3 – 1:202
 10�3 –
10/128 3:060
 10�4 2:1 2:863
 10�4 2.1
10/256 7:646
 10�5 2:0 7:178
 10�5 2.0

The level set function is initialized according to Eq. (37).
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The results using the reinitialization scheme by Russo and Smereka [12] (RSU) and the two formulations
CR-1 and CR-2 of the new reinitialization scheme are compared in Figs. 9 and 10, where the solutions after 1,
2 and 3 full revolutions of the slotted disk are plotted. The plots in Figs. 9 and 10 are computed using the
third-order accurate spatial and temporal discretization UC3=RK3 and the fifth-order accurate spatial and
third-order accurate temporal discretization UC5=RK3, respectively. The solutions using CR-1 and CR-2
are clearly more accurate than the RSU findings. After 3 revolutions, the slot has almost disappeared in
the RSU solutions and a significant area loss of the disk is apparent. In Table 3, the area loss, which is nearly
proportional to the number of revolutions, is juxtaposed for the solutions of the different discretization and
reinitialization schemes. Using CR-1 and CR-2 and UC5=RK3, about 0.3% of the disk area is lost per revo-
lution, whereas the loss is up to 17 times larger in the RSU solutions. In Fig. 11(a), the mean displacement of
the zero level set determined by linear interpolation in the x and in the y direction is plotted over time for the
UC5=RK3 solutions. The displacement caused by CR-1 and CR-2 is roughly an order of magnitude smaller
than that by RSU, while Fig. 11(b) evidences the condition j$/j ¼ 1 to be equally well fulfilled by all schemes
for the cells in C. The local anchoring of the zero level set in CR-2 provides a similar accuracy as the mini-
mization of the /0 displacement via the least-squares method being used in CR-1.

Comparing the RSU results of the different discretizations UC3=RK3 and UC5=RK3 in Figs. 9, 10 and
Table 3 yields only a small difference between the solutions despite the considerable difference in the orders
of the discretization schemes. The CR-1 and CR-2 solutions, however, clearly improve when UC5=RK3 is used
instead of UC3=RK3 and the area loss is reduced by a factor of 2. Hence, the displacement of the zero level set
caused by the RSU reinitialization scheme dominates the higher accuracy of the UC5=RK3 discretization,
thereby diminishing the quality of the solution. This is an important result, considering the fact that many
authors use higher-order methods to discretize the level set equation.

For a further investigation reference solutions have been computed using the reinitialization scheme
/i;j;k ¼ ~/i;j;k if Ci;j;k 2 C;

/mþ1
i;j;k ¼ /m

i;j;k � Ds sgnð~/i;j;kÞðj$/m
i;j;kj � 1Þ otherwise:

(
ð39Þ



Fig. 9. Problem 1: rotation of a slotted disk using the localized level set method on a 2562 cell grid. Comparison of different reinitialization
schemes: (a–c) RSU; (d–f) CR-1; (g–i) CR-2. UC3=RK3 solutions are shown for 1 full revolution (a,d,g), 2 full revolutions (b,e,h) and 3
full revolutions (c, f, i) of the disk.
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If the zero level set is recovered by linear interpolation, this scheme exactly preserves the interface but is unable
to restore j$/j ¼ 1 in C. Using the solution based on this scheme as reference indicates in how far a different
reinitialization scheme is able to improve the solution by approximating j$/j ¼ 1 in C at the cost of moving
the zero level set. In Fig. 12, UC5= RK3 solutions with the reinitialization scheme (39) are plotted and com-
pared with the respective solutions using CR-2 as reinitialization scheme, showing the latter to be slightly
superior. Unlike the novel constrained reinitialization schemes, the scheme RSU results in a displacement
of the zero level set which clearly lowers the benefit of restoring j$/j ¼ 1 in C. This fact is evidenced in Figs.
12 and 9(a)–(c), 10(a)–(c).

Note the reinitialization scheme (39) works rather well for simple displacement and solid body rotation test
cases such as the one presented, but is unable to remove the steep and small gradients emerging at the interface
in more demanding test cases such as problem 2 presented in Section 4.2.2. For this test case, a localized level
set solution could not be obtained using Eq. (39) to reinitialize the level set function.

In [18], Dupont and Liu propose a simple reinitialization strategy based on the reinitialization Eq. (9),
which is in the following referred to as DL. A reinitialization of the level set function is performed after each
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Fig. 11. Comparison of different reinitialization schemes for problem 1 illustrated in Fig. 10: (a) mean displacement of the zero level set
within the reinitialization; (b) mean deviation from j$/j ¼ 1 on cells in C. The data is plotted for each 50th time step for a total of three
revolutions of the disk.

Fig. 12. Comparison between solutions of CR-2 and the reference scheme given by Eq. (39) for problem 1, see Fig. 10: (a) after 1
revolution; (b) after 3 revolutions. Solutions with CR-2 correspond to those plotted in Fig. 10(g and i), respectively.
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j/m
i;j;k � /m

i0 ;j;kj > 1:1Dx _ j/m
i;j;k � /m

i;j0;kj > 1:1Dx _ j/m
i;j;k � /m

i;j;k0 j > 1:1Dx ð40Þ
for any integer i0 2 fiþ 1; i� 1g; j0 2 fjþ 1; j� 1g; k0 2 fk þ 1; k � 1g. On all other cells /mþ1 is set /mþ1 ¼ /m.
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Like the schemes RSU, CR-1 and CR-2 Eq. (9) is converged to machine accuracy and discretized by the
first-order upwind scheme (29). It is clear that, unlike RSU and the novel schemes CR-1 and CR-2, the
unwanted displacement of the zero level set depends on the number of iterations that are performed to solve
Eq. (9).

Let us briefly revisit the test case investigated in Section 4.1. The DL results for this test case are summa-
rized in Table 4 and juxtaposed with the CR-1 and CR-2 results from Table 2. The DL scheme is first-order
accurate and produces an error e1 which is roughly two orders of magnitude larger than that of CR-2 for the
investigated grids. The reason is that DL becomes inaccurate when the gradients at /0 are steep requiring sev-
eral iterations of Eq. (9) on cells in C as long as the condition (40) is satisfied. This results in the unwanted
displacement of the zero level set.

For the rotation of a slotted disk on a 2562 cell grid, the DL scheme gives excellent results and the solutions
are superior to those obtained with CR-2, as shown in Fig. 13. This can be explained as follows. First of all,
excellent results for the rotation of a slotted disk can be obtained without reinitialization, which is why the
rotation of a slotted disk is primarily a good test case to assess solution methods for the level set equation.
One of the challenges of this test case is that the reinitialization procedure tends to smooth out the corners
of the slotted disk. The DL scheme overcomes this problem to some extent since its formulation means for
this particular test case that the level set function is rarely reinitialized on the cells near the level set front.
However, referring to the results presented in Table 4, unlike the novel constrained reinitialization schemes
the accuracy of the DL scheme is substantially diminished as soon as steep gradients are present near the level
set front requiring several iterations of the reinitialization Eq. (9) on the cells in this region. This is one of the
reasons leading to the failure of the method in the test case presented in Section 4.2.2.

Finally, solutions on a finer 5122 cell grid using the 2562 cell grid CFL number 1.28, i.e., a time step of
Dt ¼ 0:5 is prescribed, are presented. Due to the smaller time step, twice as many reinitialization steps are per-
formed in the fine grid simulations as in the coarse grid simulations. In Fig. 14, the solutions after 1 disk rev-
olution obtained on a grid with mesh spacing Dx ¼ 100

512
using CR-2 are plotted. Table 5 gives the area loss for

the different discretization and reinitialization schemes. The fine-grid solutions corroborate the conclusions
drawn from the coarse-grid results.
Table 4
Comparison of CR-1, CR-2 and DL in the reinitialization test case presented in Section 4.1

Dx e1: CR-1 e1: CR-2 e1: DL Order: DL

10/64 1:273
 10�3 1:202
 10�3 2:023
 10�2 –
10/128 3:060
 10�4 2:863
 10�4 9:075
 10�3 1.16
10/256 7:646
 10�5 7:178
 10�5 4:630
 10�3 0.97

The level set function is initialized according to Eq. (37).

Fig. 13. Comparison between CR-2 and DL solutions for problem 1, see Fig. 10: (a) after 1 revolution; (b) after 3 revolutions. Solutions
with CR-2 correspond to those plotted in Fig. 10(g and i), respectively.



Fig. 14. Problem 1: rotation of a slotted disk using the localized level set method on a 5122 cell grid. Comparison of different discretization
schemes: (a) UC3=RK3; (b) UC5=RK3.

Table 5
Problem 1: rotation of a slotted disk

Time t (Revolutions) UC3=RK3 (%) UC5=RK3 (%)

RSU CR-1 CR-2 RSU CR-1 CR-2

628 (1) 2.50 0.29 0.27 2.27 0.15 0.14
1256 (2) 5.11 0.60 0.57 4.62 0.30 0.29
1884 (3) 7.77 0.92 0.87 7.01 0.45 0.43

Comparison of the area loss after 1, 2 and 3 revolutions of the slotted disk between solutions of several reinitialization schemes on a 5122

cell grid.
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4.2.2. Problem 2: oscillating circle

Next, results of a level set propagation test case are discussed, in which the propagation speed is a function
of space and time as in many physical applications of level set methods such as in turbulent premixed com-
bustion. A circular interface with radius r ¼ 3 centered at ðx; yÞ ¼ ð0; 0Þ in a computational domain
X : ½�5; 5� 
 ½�5; 5� is considered and the speed of propagation s normal to the zero level set is defined by
s ¼ cosð8HÞ sinðxÞ; ð41aÞ

where
H ¼ arctan
y
x

��� ���; x ¼ 2pt
te
: ð41bÞ
The time step is Dt ¼ Dx

4
corresponding to a CFL number of 0:25 and te ¼ 5 is used on all grids. The extension

velocity f ¼ sn is prescribed on the cells in C and determined in X/ using the method described in [13].
In Fig. 15, the zero level set is plotted at x ¼ p, x ¼ 2p and x ¼ 6p for UC5/RK3 solutions obtained on a

2562 cell grid. The different reinitialization schemes RSU, CR-1 and CR-2 are compared. Qualitatively, CR-1
and CR-2 give a significantly improved solution compared to RSU. In Fig. 16, the solutions obtained using
CR-2 and DL on different grids are compared. Using the DL reinitialization scheme, the original circular
shape of the zero level set is not attained at x ¼ 2p and artifacts of the oscillatory motion are clearly visible.
These artifacts emerge primarily when the zero level set is contracted to its original circular shape, as the plots
in Fig. 16 illustrate. However, Fig. 16(a) shows that the DL solution exhibits small instabilities already at
x ¼ p on the 1282 cell grid. The reason for the failure of the DL scheme in this test case is twofold: (1) the
DL scheme is unable to correct the level set function on cells in C where / is flat, i.e. 0 < j$/j < 1; (2) as dis-
cussed in Section 4.2.1, the DL scheme is able to remove steep gradients on cells in C, but at the cost of moving
the zero level set considerably. In [18], the DL scheme is used with only two iterations of Eq. (9) per reinitial-
ization step, which, however, does not significantly improve the DL solution of the oscillating circle problem.
In Table 6, the area loss is listed for the RSU, CR-1 and CR-2 solutions at x ¼ 2p. Using CR-1 and CR-2,
area is gained, and the area defect is reduced by a factor of roughly 20 compared with the RSU findings. The



Fig. 15. Problem 2: propagation of a circle with space- and time-dependent speed using the localized level set method on a 2562 cell grid.
Comparison of different reinitialization schemes: (a–c) RSU; (d–f) CR-1; (g–i) CR-2. UC5/RK3 solutions are shown at x ¼ p (a,d,g),
x ¼ 2p (b,e,h) and x ¼ 6p (c, f, i), respectively. Dashed lines: initial zero level set.
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rate at which the area defect decreases with increasing grid refinement is approximately first order for all
schemes.

In Fig. 17, the mean displacement of the zero level set within the reinitialization and the mean deviation
from j$/j ¼ 1 are plotted for the different reinitialization schemes showing essentially the same trend as for
problem 1. An interesting feature of the schemes CR-1 and CR-2 is highlighted by Fig. 17(a) indicating that
the displacement of the zero level set within the reinitialization goes to zero as the propagation speed goes to
zero, i.e., at x ¼ f0; p; 2pg. Clearly, this is not the case for RSU.

4.2.3. Problem 3: topology changes

Finally, results of numerical simulations of coalescing and segregating interfaces obtained by the novel
schemes are briefly presented. The initial level set function is given by
/ðxÞ ¼ min r �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� aÞ2 þ y2

q
; r �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxþ aÞ2 þ y2

q� �
; ð42Þ
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Fig. 17. Comparison of different reinitialization schemes for problem 2 illustrated in Fig. 15: (a) mean displacement of the zero level set
within the reinitialization; (b) mean deviation from j$/j ¼ 1 on cells in C. The data is plotted for each 10th time step.
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HðsÞ ¼
s if t < 1:0;

�s otherwise;

(
ð43Þ
which is prescribed on the cells in C. Using s ¼ 1 and a CFL number of 0.064 gives a time step of
Dt ¼ 0:005. This rather small CFL number is used to highlight the difference between the reinitialization
schemes and the accuracy of the proposed methods for small time steps and correspondingly a large number
of reinitialization steps. The solution is run until t ¼ 3:2. As for problem 2, the extension velocity is extended
in X/ before each time step using the method proposed in [13]. In Fig. 18, the solution is plotted for the
reinitialization schemes RSU and CR-2 at different time levels showing the two circular zero level sets being
coalesced and segregated. In Fig. 18(g) and (h) the analytically exact solution is given as reference, indicating
the enhanced accuracy of CR-2 compared to RSU, although the difference between both solutions is rather
small up to t ¼ 1:2 since the circular interfaces are essentially uniformly expanded and shrunk. Solutions
obtained with CR-1 (not shown) are indistinguishable from those obtained with CR-2. As in problem 1,
the sharp corners of the interface are smoothed in the level set solutions hence, the interface segregation
occurs at a later time, which becomes apparent when Fig. 18(a) and (f), (b) and (e), and (c) and (d) are
compared.



Fig. 18. Problem 3: coalescing and segregating interfaces using the localized level set method on a 1282 cell grid. Comparison of the
reinitialization schemes RSU and CR-2. The analytically exact solution is given as reference in (g) and (h). UC5/RK3 solutions are plotted
at (a) t ¼ 0, (b) t ¼ 0:5, (c) t ¼ 0:8, (d) t ¼ 1:2, (e) t ¼ 1:5, (f) t ¼ 2:0, (g) t ¼ 2:4, (h) t ¼ 2:8, (i) t ¼ 3:2. To more easily compare (c) and (d),
(b) and (e) and (a) and (f) the center row is to be read from right to left.
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5. Summary

Two formulations of a new partial differential equation based reinitialization scheme have been derived in
the framework of a localized level set method. The new reinitialization scheme takes the location of the inter-
face explicitly into account. The first formulation is derived using the least-squares method to minimize the
displacement of the interface within the reinitialization. The second formulation is derived by reducing the
overdetermined problem, which is solved in the first formulation, to a determined one. It is shown that the
resulting scheme locally preserves the location of the interface. Both formulations result in algorithms that
are simple to implement and computationally efficient.

The enhanced accuracy and the stability of the proposed methods are evidenced by numerical simulations
of the rotation of a slotted disk, a propagation test case relevant for the application of level set methods in
turbulent premixed combustion and an interface coalescing and segregating problem. It is demonstrated that
the accuracy of high-order discretizations of the level set equation is preserved even when the level set function
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is reinitialized after each time step. The proposed methods can be efficiently applied to localized and global
level set methods. From the findings of the test cases it can be concluded the second formulation to be slightly
more accurate than the first formulation. Both methods outperform the existing schemes, which have been
used as reference forms, with respect to accuracy and robustness, i.e., the susceptibility to the discretization
scheme and the number of reinitialization steps.
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