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Abstract

A partial differential equation based reinitialization method is presented in the framework of a localized level set
method. Two formulations of the new reinitialization scheme are derived. These formulations are modifications of the par-
tial differential equation introduced by Sussman et al. [M. Sussman, P. Smereka, S. Osher, A level set approach for com-
puting solutions to incompressible two-phase flow, J. Comput. Phys. 114 (1994) 146-159] and, in particular, improvements
of the second-order accurate modification proposed by Russo and Smereka [G. Russo, P. Smereka, A remark on comput-
ing distance functions, J. Comput. Phys. 163 (2000) 51-67]. The first formulation uses the least-squares method to explicitly
minimize the displacement of the zero level set within the reinitialization. The overdetermined problem, which is solved in
the first formulation of the new reinitialization scheme, is reduced to a determined problem in another formulation such
that the location of the interface is locally preserved within the reinitialization. The second formulation is derived by sys-
tematically minimizing the number of constraints imposed on the reinitialization scheme. For both systems, the resulting
algorithms are formulated in a three-dimensional frame of reference and are remarkably simple and efficient. The new for-
mulations are second-order accurate at the interface when the reinitialization equation is solved with a first-order upwind
scheme and do not diminish the accuracy of high-order discretizations of the level set equation. The computational work
required for all components of the localized level set method scales with O(N). Detailed analyses of numerical solutions
obtained with different discretization schemes evidence the enhanced accuracy and the stability of the proposed method,
which can be used for localized and global level set methods.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Level set methods have found various applications in which discontinuities in physical properties play an
essential role and can be described by the propagation of an interface. Recent applications in computational
physics concern turbulent premixed combustion [1,2], two-phase flows [3,4], and crystal growth [5]. In com-
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bustion, the idea of tracking a propagating surface to theoretically describe the front of a premixed flame was
introduced by Markstein [6]. Later the derived equation became known as the G equation, which is formally
equivalent to the level set equation. The numerical foundation of level set methods was established by Osher
and Sethian [7].

The interface is commonly represented by the zero level set ¢, bounding a region Q" C R” and separating
Q™ C R" from Q. It is embedded in the n-dimensional scalar level set function ¢ = ¢(x, ¢),

¢y ={(x,1) : ¢(x,1) =0}, x€e€R", t€R". (1)
For n = 3, let the components of the coordinate vector be denoted by x = (x, y, z)T. The level set function ¢
can be any Lipschitz continuous function with the properties
¢ >0 forxeQF,
¢ =0 forx e d,, (2)
¢<0 forxeQ .

The motion of the zero level set ¢, is governed by the extension velocity f = f(x, ?),
f=v+sn (3)

with the components f = (f;, f,, £.)". It comprises the advection by an underlying flow velocity field v = v(x, )
and the propagation of the front relative to the flow field in the normal direction to ¢, by s. The normal direc-
tion is defined by the outward normal vector
Vo
n=-——— 4)
Vo
pointing into Q~, where V = (0,, 0, 6Z)T denotes the vector operator of spatial derivatives. The local speed of
propagation s may be induced by several effects such as curvature [7] and, in the case of premixed combustion,
the flame propagation into the unburnt gas. A great advantage of level set methods is geometric quantities
such as the curvature

€C=V-n (5)
to be readily obtained. The fundamental level set equation can be written

0p+f-Vop=0 (6)
or in terms of the normal velocity f, = —f -n

0 + ful Vo[ = 0. (7)

At f, = 1, Eq. (7) is a Hamilton—Jacobi equation. Besides the accurate and efficient solution of the Hamilton—
Jacobi type Egs. (6) and (7), for which methods are reported in the literature [8,9], the reinitialization of the
level set function ¢ is an important issue in level set methods having a substantial impact on the accuracy and
the efficiency of the overall solution method.

1.1. Reinitialization of the level set function

In general, the formulation of Eq. (6) permits an arbitrary, sufficiently smooth function ¢ with the prop-
erties given in (2). However, solving Eq. (6) moves the zero level set ¢, correctly, but may perturb the level
set function near ¢, [10,11], i.e., it may cause very large or small gradients. To alleviate this difficulty, it
was proposed in [10,11] to replace the arbitrary level set function by a well behaved function and initialize
¢ into a signed distance function, which is the unique viscosity solution of the Eikonal equation

Vo[ =1 (8)

anchored at ¢,. However, once initialized into such a signed distance function, the level set function ¢ usually
does not retain this property under the evolution of Eq. (6) and needs to be reinitialized at regular time
intervals. The most straightforward but inefficient reinitialization technique is to directly compute the mini-
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mum distance of each point from the zero level set, requiring a computational work of the order O(N 2), with
N being the number of cells. A more efficient and simpler approach is to use a partial differential equation to
iteratively reinitialize the level set function. Sussman et al. [10] reformulate the Eikonal equation (8) as an evo-
lution equation in artificial time t

09" +S(¢)(IVg'| — 1) =0, )
which can be rewritten as a nonlinear hyperbolic equation
8.9"+w(¢") - V¢' = 5(9). (10)

where w(¢" ) = S((])) 1V¢‘I and the superscript v denotes the discrete pseudo-time step. The quantity S((?)) is a
smoothed sign function of the perturbed level set function qﬁ ¢(x 7 = 0) being defined as

¢

/(;52_1_627

where € is a smoothing parameter. Analytically, Eqs. (9) and (10) yield for T — oo the unique viscosity solution
of the Eikonal equation correcting the perturbed level set function ¢ to become a signed distance function and
keep the zero level set invariant because S(qbo) — 0. However, since in a discrete representation of ¢ hardly any
computational points coincide with ¢, the location of the zero level set has to be defined by interpolating
neighboring points. It has been emphasized by several authors [4,12] that solving the discretized version of
Eq. (9) considerably displaces the zero level set and thus may lead to substantial errors due to the reinitializa-
tion. A number of approaches were taken to remedy this problem [4,12]. It was pointed out in [8] that the
modification proposed in [4] prevents a steady-state solution of the reinitialization equation (9) and leads
to oscillations of the zero level set within the reinitialization procedure. It will be shown in this paper that
the original second-order method of Russo and Smereka [12] also produces oscillations of the zero level set.

S(¢) = (11)

1.2. Objectives

Ultimately, numerical methods used for the reinitialization of the level set function should be designed
based on the following criteria:

(1) The ¢, iso-surface is kept invariant by the reinitialization.
(2) The level set function satisfies a signed distance function, i.e., |[V¢| = 1, which is anchored at ¢,.
(3) The schemes can be efficiently applied to large-scale problems.

Regarding these criteria two formulations of a new partial differential equation based reinitialization
scheme are derived. The first formulation is based on the least-squares method which minimizes the unwanted
displacement of the interface within the reinitialization. The overdetermined problem, which is solved in this
first formulation of the reinitialization, is reduced to a determined problem in a second formulation such that
the location of the interface is preserved within the reinitialization. The second formulation is derived by min-
imizing the number of constraints imposed on the reinitialization scheme in the first formulation. The new
formulations are modifications of the differential equation based methods introduced in [10] and modified
in [12] and are remarkably simple and efficient.

This paper is organized as follows. After a brief description of the localized level set method in Section 2,
two formulations of a new reinitialization method are derived in Section 3. Results of two-dimensional com-
putations are given in Section 4, before the findings of the present paper are summarized in Section 5.

2. Level set formulation
For the sake of a simple description of the algorithms, a computational domain £ is considered with a cell-

centered discretization on a uniform mesh using a constant spacing Ay = A, { = {x,y,z}, in the x, y and z
direction, respectively. All methods described below are also suitable for curvilinear coordinates. The cells
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in Q are denoted by C;;, where the subscripts indicate their discrete location in the computational grid. Fur-
thermore, the subset I' of cells which are adjacent to the zero level set is defined by

r={Cus: (o <o) v (ke <0) v (1i0 <o)} -

for any combination of integers /'€ {i+1,i—1},/ € {j+1,j—1},K € {k+1,k—1}, with I\ ¢ =
¢ ;595 That is, all cells in I' are located within a distance 4, from the zero level set, Fig. 1.

The computational costs of solving the level set Eq. (6) can be reduced by orders of magnitude when the
level set method is localized, i.e., a solution is sought only in a small region around the zero level set, while
all other areas are assigned a constant value indicating the location in Q% or Q™ [13,14]. In this paper, we con-
sider a localized computational domain Q, C Q2 moving along with the zero level set. All cells outside 2, are
discarded and the level set algorithms are localized as proposed in [13], such that the computational costs of
the overall level set method scale with O(N). Let B designate the subset of cells C;;; which are used in the
localized solution of Eq. (6) forming a narrow band around ¢, bounded by the boundary cells C; Jk € OB.
Let us furthermore define 0B8N Q4 = () such that boundary cells are outside of and adjacent to Q, Fig. 1.
B is created using an efficient marching algorithm, which is based on neighbor relations. The Cartesian flow
solver underlying the present level set method is based on a hierarchical quadtree/octree data structure such
that all neighbor information can be directly accessed [15]. The narrow band B is regenerated before each
reinitialization step, while the subset I" is updated after each time step.

2.1. Discretization

The level set equation (6) is integrated in time with a 3-step third-order accurate TVD Runge—Kutta scheme
[16] denoted by RKj,

d)(O) — w,
¢ =0 + pp" Y — AL ("), (13)
¢w+l _ ¢<N)7

where N = 3 and the coefficients « = (0,2,;) B = (1,4 , 3) and y = (171,2) are used. The superscript k denotes

the Runge-Kutta step, while the superscript w counts the time steps 4¢. The operator L(¢) denotes the numer-
ical approximation of the term f - V¢ in Eq. (6), which is specified in the following. To spatially discretize the
level set equation, unlimited third- and fifth-order upstream central schemes denoted by UC; and UCs are

Fig. 1. B and Q, in the localized level set method. In this example, B extends four cells on either side of the zero level set. Circles denote
cell centers of internal and boundary cells in B; shaded cells are boundary cells in 8B; Q4 consists of internal cells only; dots denote cells in
I.
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used, respectively. Both schemes are investigated in [8] and shown to give excellent results. Using UCs the
discrete upwind-biased spatial derivatives read in the x direction

D),(,Lk = 601Ax ( = 2¢i 30 + 15¢i 50 — 600,y ;4 + 200, ;5 + 306, ;4 — 3¢i+2‘j‘k>v
(14)
fok = 601Ax (2¢i+3‘j,k —15¢110,6 + 6001 — 200, — 300, ;, + 3¢i2‘j,k>a
where 8,¢[/% = Di/" + O(43). With UCs, the derivatives in the x direction are approximated by
D)zr/LL = 611,( <¢12J,k - 6¢)i—1j.k + 3¢i,j,k + 2¢1+1Aj,k)>
(15)
D)irfk = 6i|x ( - ¢i+2,j7k + 6¢i+1,j7k - 3¢i,j,k - 2¢i1,,1k>7

where 6X¢|f]/i = D,V/L]{R + (’)(Ai). Likewise derivatives with respect to the y and z direction are obtained by
exchanging the respective subscripts. Let us define ijik = D,.“fk j:l)lf’jfk and introduce the vector operator
ij‘k = (D, D D))" Then, L(¢) can be computed by

ik Hijio ik

L) = %{ (Z 7

¢

e,;> ':D:i,k +f- fDl._J.’k}, {=A{x,»,z}, (16)

where the summation is over all spatial directions, e; is the unit vector in the { direction and f is evaluated on
the cell C, .

Localized level set methods are known to have stability problems at the boundary [13], which can be
avoided by introducing the Heaviside function

1 if x € Qy,
c(x):{ hEE (17)
0 otherwise
to obtain
Op+c(x)f-Vp=0 (18)

in conjunction with a reduced-order discretization near 0/3. Unless the UCs stencil lies completely in B, UC; is
used near OB or a first-order upwind scheme if the UC; stencil contains a cell which is not in 5. A likewise
reduction applies when UC; is used as base scheme. Using Eq. (17), cells on 0B are not updated, such that
the localized solution of the level set function evolves based on data in 5 only.

A more sophisticated form of the cut-off function (17) is proposed in [13]. However, the simple formulation
(17) in conjunction with the reduced-order discretization near 0B performed well in all test cases presented in
Section 4.

3. Reinitialization of the level set function

A major difficulty in partial differential equation based reinitialization methods is to avoid the displace-
ment of the zero level set within the reinitialization. It is evident that finite-order approximations of these
equations cause these displacements in the general multi-dimensional case, if a solution to |V¢| =1 is
sought without further constraints. A major drawback of the differential reinitialization equation (9) is that
the zero level set is considerably displaced and that this displacement may increase with an increasing num-
ber of iterations. Russo and Smereka [12] improve the original Hamilton-Jacobi formulation (9) by Suss-
man et al. [10] by discretizing Eq. (9) such that the stencils use information of only one side of the zero
level set. Furthermore, it is shown that, unlike in the original formulation, the unwanted displacement of
the zero level set in the modified reinitialization scheme is independent of the number of iterations. Their
modified formulation reads
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P = ¢:/k j‘t (Sgn(¢t/k)|¢,,k| z/k) if Cijp €1, (19)
ik =
’ ¢ — At sgn(e Uk)(|Vd>l]k| —1)  otherwise,

where ¢ denotes the level set function before the reinitialization, i.e., ¢ = ¢'~* and
a)i,j,k
b 2 < 2 7 2\ /2
([ax¢i,j,k] + [0y¢iju]” + [0:0ij] )

is the target value of the level set function on C; ; € I' approximating the signed distance function. As noted in
[12], an alternative to iteratively determining the level set function on the cells in I' is to directly update
¢ijx = dijx YCijx € I'. The iterative and the direct update were tested in the present investigation and no dif-
ference in the stability and the rate of convergence was found, which is why the direct update is used in this
paper. In both cases, the CFL stability condition requires 4t < 4. A central difference scheme is proposed in
[12] to evaluate the discrete derivatives [0:¢; ], { = {x,y,z}, in Eq. (20). As indicated in Fig. 2, this central
scheme results in oscillations of the interface location in the solutions, which can be stabilized using an upwind
discretization across the zero level set instead. This discretization reads in general form e.g. for the x direction

. ~
¢(i/'k) — ¢(i,1!,k)

di,j,k =

(20)

[ax(i)i,j‘k] ~ 9 (213')
ma"( Mgk T Xk GX)
where e, = 733 and for & = {$,x}
cxif i €TV ((4) A (B)),
g = Cijik 1k g I'V((4)A(B)) (21b)
S Ciu1yx  otherwise,
where the conditions (4) and (B) read with A+ 4=k — g and 4,0 =@ — iy ik
u>ﬁ(nﬂﬁ¢<®A(mw¢+m<uuk& -
c

(B) if (47404;,49 < 0) v (I4he < 0) v (1o < 0).

The conditions (4) and (B) are formulated to take into account cases in which multiple interfaces are close to
each other and about to coalesce, see e.g. problem 3 in Section 4.2.3. In most other scenarios, either condition
(A) or (B) is not fulfilled such that Eq. (21) reduces to a simple upwind/center difference scheme utilizing only
cells in I'. Discretization schemes for the y and the z directions are obtained by exchanging the corresponding

a b

RSC, UC/RKj;, t=40 RSC, UC5/RKs, 2.7
RSU, UC5/RK3, t=40 ---------

v

Fig. 2. Comparison of UCs/RKj solutions using the reinitialization schemes RSC and RSU: (a) rotation of a slotted disk; (b) propagation
of a circular zero level set using RSC. The level set function is reinitialized after each time step. The solutions clearly illustrate the kinks
produced by RSC, while RSU is stable (see also Fig. 15). The thin lines show the initial zero level set. Details of the test cases are given in
Sections 4.2.1 and 4.2.2.
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a
J+l1 (e}
J (@)
J-1 (@)
i-2
b
J+l @)
j (@]
J-1 (@)
k-2 k-1 k k+1

Fig. 3. Illustration of the stencils to discretize Eq. (20) for different reinitialization schemes: (a) x—y plane at z = k; (b) z—y plane at x = i.
Circles denote cell centers; the diamond-shaped areas surrounded by dashed lines illustrate the central difference stencil used in [12] (RSC)
for the cell marked by the shaded circle; the upwind discretization stencil, Eq. (21), used in RSU, CR-1 and CR-2 is given by the shaded
areas.

subscripts. In the following, the Russo—Smereka scheme (19) is denoted by RSC when used in conjunction
with a central discretization scheme and is denoted by RSU when discretized by the upwind scheme given
by Eq. (21). In Fig. 3, the stencils for the RSC and RSU schemes are illustrated.

3.1. Constrained reinitialization scheme

We now turn to present two formulations of a new reinitialization scheme which are derived by explicitly
imposing the zero-displacement constraint on the zero level set. Whereas they are formally closely connected,
the philosophy behind these formulations is different. The formulations are modifications of the scheme intro-
duced by Sussman et al. [10], Eq. (9) and do improve the modification of this scheme proposed by Russo and
Smereka [12]. The first formulation denoted by CR-1 is based on the least-squares method and is formulated
to minimize the displacement of the zero level set within the reinitialization. The second formulation denoted
by CR-2 is derived by systematically minimizing the number of constraints imposed on the scheme CR-1. The
overdetermined problem which is solved in CR-1 is reduced to a determined problem such that the location of
the interface can be preserved within the reinitialization.

Considering a cell in I, the difference between the formulations can be briefly summarized as follows. In the
first formulation, the level set function on this cell is determined such that the accumulated displacement of the
zero level set at all points which can be identified by linear interpolation in the Cartesian space directions is
minimized. In the general multi-dimensional case, multiple such points exist such that the zero level set cannot



6828 D. Hartmann et al. | Journal of Computational Physics 227 (2008) 6821-6845

be restrained. The essence of the second formulation is to represent this cloud of points by a single point in ¢,
to which the zero level set can be anchored. The level set function on the considered cell is in the second for-
mulation determined such that this single point remains invariant.

3.1.1. Formulation CR-1
In general, reinitialization methods can be judged by their capability to

e modify the level set function such that |[V¢| = 1 is satisfied,
e keep the ¢, iso-surface invariant.

While the first criterion is relevant for all cells in B, the second condition is important only for the cells in I'.
Both criteria can be fulfilled analytically, but one usually faces an overdetermined problem in the discrete ver-
sion of the level set function in multi-dimensional space such that a solution which exactly meets both criteria
cannot be obtained. Hence, for the cells in I', a reinitialization scheme which minimizes the deviation from the
above stated criteria is sought. Using linear interpolation to determine the location of the zero level set, these
errors can formally be written

(8i,j$k)0 - ([axd)i,j,k}z + [ayQ'),‘,j,k]z + [azd)i,/ﬂk]z) 1/2 . 1,

(22)
ik
(gtj.k)fx = ¢t‘/.k - rl(ij,j,k)iqs(i‘/,k)ﬂ C(zlj.k), € Sflj,ka
where ”l(,] jkk) = f—” and S, contains the neighbor cells of C;;, across the ¢, iso-surface, i.e.,
(i.j.k) y
Si,j‘k - {C(Ijk . ¢z/k¢ (i,j,k), < O} (23>

The quantity (&;;4), is the deviation from |V¢| =1 and (), can be considered a measure of the interface
displacement on the line connecting the cell centers of C;;; and C; ;). Furthermore, let M; ;; denote the num-

ber of cells in S; ;4 such that o = {1,. M, ;x}. Summing up the squared errors weighted by the quantity J,
yields the least-squares function £
M,k
,Jk—25 S,Jk (24)

In the case deplcted inFig. 4, M, =3and S; ;4 = {Ci—1k, Cij-14, Cijk—1}. To find the minimum error, £, ;; is
differentiated with respect to the M, ;, + 1 unknowns, the derivatives are set 0 and the resulting system of M ;; + 1
equations is solved. For example, the equation resulting from differentiating with respect to ¢, ;, reads

Mk
a¢’w‘.k£iaf:k = a(b,-\,-,kéo(ei,j,k)é +2 (Z 505(8l}/~k)ac> =0. (25)
In Eq. (25) and the corresponding equations for the derivatives with respect to ¢ ;4. ={1,...,M;;4}, the

first term on the right-hand side, i.e., the derivative of (¢; /I»)o’ is nonlinear such that Eq (29) and the corre-
sponding equations are difficult to solve analytically. Iterative solution schemes can be derived but introduce
complexity. However, provided the level set function has been reinitialized via Eq. (20) into a signed distance
function in I, (&), may be assumed very small and the weighting

0, o =0,
Oy = | o (26)
o =

can be introduced into Eq. (25), which then readily allows to determine ¢, ;. To be consistent with Eq. (19),
this equation is written in terms of the signed distance

1 Mk

d[ - z .k d 27
Jok Mi./'.k Zl (i), (1.j:k)y0 ( )

which can be introduced into the scheme (19) by settingd, ; x = =d, s orused todirectly update the level set function
by ¢, = di . Since Eq. (27) is an equation for the signed distance on the cell C; ;4, there is no need to precom-



D. Hartmann et al. | Journal of Computational Physics 227 (2008) 6821-6845 6829

a
j+1 o
j O
J1 (@)
i-2 i-1 i i+1
J+l o
j O
J-1 o
k-2 k-1 k k+1

Fig. 4. llustration of the ¢, iso-surface in a three-dimensional Cartesian frame of reference: (a) x—y plane at z = k; (b) z—y plane at x = i.
Circles denote cell centers; shaded circles denote the set R, i.e., those cells to which step 1 is applied in CR-1 and CR-2. Arrows pointing
towards C;;x marked by the filled circle indicate the set S;;4 containing the cells, which are used in Egs. (27) and (36), respectively.

pute this distance using Eq. (20). Considering the example depicted in Fig. 4, the signed distance function d needs
to be precomputed only on the cells in S; ;. Hence, a 2-step correction scheme is obtained, which in the first step
computes the signed distance function on the cells in S; ;+ using Eq. (20) and in the second step uses Eq. (27) to
compute ;Z,-‘,-,k on all other cells in I'. Both steps are performed only once and sequentially, such that the d; ),
required in Eq. (27) are available from the first step and Eq. (27) is thus explicit. Hence, no iterations between
the two steps are necessary to obtain an estimate of d; ;; on cells at the zero level set.

As illustrated in Fig. 5 for the one-dimensional case, applying the second step to C; ; gives exactly the same
result as reinitializing the level set function using Eqs. (20) and (21) on all cells in I'. In this limiting case it can
thus be considered a redistancing constraint. In the general multi-dimensional case, the level set function is
allowed to deviate from |V¢| = 1 by the introduction of dy = 0. Then, the second reinitialization step via
Eq. (27) seeks to minimize the displacement of the zero level set. However, the results of our numerical exper-
iments presented in Section 4 evidence that the first step, i.e., the reinitialization of the level set function into a
signed distance function on only one side of the zero level set, is sufficient to obtain a close approximation of
the signed distance function on all cells if Eq. (27) is used on the other side of the interface. In fact, the approx-
imation of the signed distance function using CR-1 is as accurate as if the reinitialization into a signed distance
function is explicitly performed on all cells via the scheme RSU.

Preliminary numerical experiments suggest that the cells on which steps 1 and 2 are executed should be
determined according to the local curvature. Essentially, the sets S; ;, should contain as many cells as possible.
Accordingly, let I' be divided into two subsets R and C such that
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rdi=d;

Fig. 5. Illustration of the 2-step correction in the schemes CR-1 and CR-2 for the one-dimensional case: (a) step 1: reinitialization of
¢; = d;, Eqs. (20) and (21); (b) step 2: reinitialization of ¢,_; = =d, = =ri-1d;, Eqgs. (27) and (36), using explicitly the constraint that ¢, = do.
For the one-dimensional case, step 2 is equivalent to executing step 1 for ¢, ; and ¢, = bo.

{R - {Cll,jjk E F . G”i,jAk(;ZBi,j,k > 0 \/ (Gi,j,k == 0 /\ &si,j,k > 0)}, (28)
={I'"\R},

where the curvature €, 4, Eq. (5), is computed on the cell C; ;. Then, R = |J S, and the overall reinitializa-
tion scheme CR-1 can be summarized as follows:

Step 1. Compute the signed distance function on all cells in R using Egs. (20) and (21).
Step 2. Apply Eq. (27) and set d, ;; = Zi,-vj_yk on all cells in C.

Step 3. Update ¢, ;;, = d; ;4 on all cells in I'.

Step 4. Solve the reinitialization Eq. (9) to steady state on C;;;, € {B\T}.

This scheme is very simple and of comparable computational costs as solving Eq. (9) for all cells or using
the scheme (19). It updates the level set function on the cells in I in steps 1-3 before iteratively reinitializing all
other cells in B using the original Eq. (9) proposed in [10]. Using a first-order spatial discretization and for-
ward Euler integration in pseudo-time 7, Eq. (9) reads in its discretized form

T ?i,_/}k

|bijx

d):jli = d);y,j,k - ( (D+¢Uk7 ('Z’)ljk) 1)7 C = {X,y,Z}, (293)

where the pseudo-time step is 47 = ﬂ and G is the Godunov Hamiltonian

\/max a2, b’) +max(c2,d”*) + max(e2, f2) if biji =0,
(29b)

Gla,b,c,d.ef) = .
\/max a’,b>) +max(c2,d>) +max(e2, f2) if ¢;;x <0

with ¢, = max(a,0) and a_ = min(a,0) and

0= D;d)i,j,k _ d)ﬁj}k - d)i—lj,k b= Dj(rbi‘/,k _ ¢i+1,j«,k - d)i,jk 7
Ay Ay

c= D;d)i‘/,k _ qsi,jﬂ,k - d)i.j—l,k Cd= D;qsi‘/.k _ ¢[,j+17k - ﬁi’i,jyk7
Ay Ay

€= Dz_(f’zx/,k = ¢7id‘-’k — d)i’j"kil , [ = D;d)i-,ﬂk = 7@%”1 - qsi‘j’k .
AX AX
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Eq. (29) constitutes a consistent and monotone discretization scheme of Eq. (9), which converges to the unique
viscosity solution of the Eikonal equation [10].

3.1.2. Formulation CR-2

In this section, the derivation of the formulation CR-2 is presented. We start by executing step 1 of CR-1,
i.e., the level set function is reinitialized using Eqgs. (20) and (21) on all cells in R. Step 2 of CR-1 is reformu-
lated to give a relation which locally anchors the position of the zero level set. Consider again the cells S;
depicted in Fig. 4, which are reinitialized into a signed distance function in step 1. The center points of these
cells span a polygon, which is depicted as the hatched triangle in Fig. 6. The perturbed level set function and
the signed distance function can be interpolated to the center of this polygon using the second-order accurate
interpolation operators /¢ and I ;d given by

. 1 Mk
Lijnd = Mo ; B, (30a)
and
1 Mix
Lijnd = Moy ;dw,k)xa (30b)

i.e., (1,0 $ and I;;,d evaluate the average of the corresponding variable values on the cells in S ;. Using the
interpolated values, we can show that the location of the zero level set remains locally fixed if the reinitializa-
tion scheme preserves the relation

dijk _ ¢i,j,k~. (31)
1(i1j=k)d [(i,_j,k)¢

Consider the location of qu)o before the reinitialization and the location of ¢, after the reinitialization on the
line connecting x;;x corresponding to the cell center of C;;; and xs,,, corresponding to the center point of the
polygon spanned by S; ;. Furthermore, let 4y be Ax = Xs,,, — X; 4. Using linear interpolation, the locations X,
of ¢ and x¢ of ¢, can be computed by

ik
ik = L0 Pijk

(1K) T/ (ij.k)

(ij-1.k)

Xo = Xk + A= (32)

and

Fig. 6. Illustration of the determined problem in the scheme CR-2: (a) three-dimensional view of the problem; (b) reduced determined
problem. Circles denote cell centers, the shaded circle denotes the cell C; . The hatched areas illustrate the stencil of cells used to
determine d; ;; via Eq. (36). The square denotes the center of this stencil, to which d and ¢ are interpolated via Eq. (30). The open diamond
marks the point to which the ¢, iso-surface is anchored by the scheme.
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_ diir
X0 = Xiji + Ay ————. (33)
! dijr — Lijndijk
The condition x, = X, is satisfied if
1 1
1 1(f.,./;><?' - 1— Lijmnd’ (34)
- bijk diji

which is exactly fulfilled by Eq. (31).
Since I(; ;4 ¢ is determined before and 7; ;4 d is determined after step 1, d;;, can be computed by rearrang-
ing Eq. (31) to obtain

od
1/ k — d)z s k (35)
(t J k) 4)
which can be rewritten by substituting / (ii(,-,k)&) and /(;;xd and using é’it,-_k to be consistent with Eq. (27),
_ ~ Z i, kd i k
dijx = Uk”kij (36)
Z ()b (i,j.k),

It is clear that Eq. (36) exactly fulfills the constraint (31), see Fig. 5, such that the ¢, iso-surface is fixed at the
location of its intersection with the line connecting x;;+ and xs,,,, which is depicted as the open square in
Fig. 6(b). As Eq. (27), Eq. (36) can be 1ntr0duced into the scheme (19) by setting d; ;; = =d, ik OF used to directly
update the level set function by ¢, ;;, = d; ;. Similar to CR-1 a 2-step correction scheme is obtained with Eq.
(20) applied in the first step and subsequently Eq. (36) used in the second step. As in CR-1, both steps are
performed only once and sequentially such that no iterations between the two steps are necessary to obtain
an estimate of d;;; on cells at the zero level set. Using the subsets defined in Eq. (28), the scheme CR-2
can hence be summarized as follows:

Step 1. Compute the signed distance function on all cells in R using Eqgs. (20) and (21).
Step 2. Apply Eq. (36) and set d; ;; = Zi,-,j_k on all cells in C.

Step 3. Update ¢, ;; = d; ;4 on all cells in I'.

Step 4. Solve Eq. (29) to steady state on C;;x € {B\ I'}.

Note the scheme holds for arbitrary M, ;, even though the derivation above cannot be illustrated geomet-
rically if the cell centers of S; ;4 are not located within the same plane, which is the case for M, ;;, > d, where d
is the number of space dimensions.

3.1.3. Discussion of CR-1 and CR-2

The displacement of the zero level set caused by the constrained reinitialization scheme is independent of
the number of iterations performed to solve the reinitialization equation. The formulations CR-1 and CR-2
differ in step 2, while steps 1, 3 and 4 are alike. Steps 3 and 4 can be replaced by solving Eq. (19) using the
first-order upwind discretization given above with d;;;, computed in steps 1 and 2. This yields the same
accuracy.

Referring to CR-1, Eq. (27) can be generally reformulated to give a correction Ad, ; of d; ;, provided d; ;x
has been computed using Egs. (20) and (21), i.e., the first step is executed on all cells in I". Obviously, this
yields exactly the same result as the procedure described above.

A further modiﬁcation is to distribute the correction term to C;;; and S;;;, such that the corrections

T +1 Ad;j and — i +1 Ad; ;, are applied to C;;; and S, 4, respectively. However, numerical tests reveal that
this distributed correction procedure produces oscillations and does not improve the accuracy of the proposed
scheme.
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4. Results

We now turn to present results of numerical experiments using the novel methods. First, the order of the
schemes is investigated in a static reinitialization test case, followed by the solid-body rotation of a slotted disk
and propagation test cases including topology changes, which are considered to investigate the accuracy and
stability of the novel reinitialization schemes.

4.1. Order of the reinitialization schemes

The order of the proposed reinitialization schemes is investigated in a test case similar to that used in [12].
Let the level set function be initialized as

$(x) = g(x)(r — v/x* +7), (37a)
which defines for g(x) = 1 an infinite number of concentric circular level sets with a zero level set of radius r.
Retaining the zero level set, a perturbed level set function with small and large gradients is obtained using

gx) =01+ x—r’+@—-r] (37b)

Fig. 7 depicts the level set function for » = 3 after being reinitialized for a different number of iterations using
CR-2 on a 128 cell grid. Note, the cells in I' are updated before the first iteration and remain unchanged
thereafter.

To evaluate the order of the different schemes, the L; norm of the difference e; between the exact signed
distance function and the computed function is determined at the zero level set by

1
er =D -9, :ATFZ|Di,j_¢i,j|v (38)
T

where D;; = r — | /x}; 4 7, is the exact signed distance function and A/ denotes the number of cells in I'. The
results are summarized in Tables 1 and 2 and plotted in Fig. 8. As expected, all schemes are second-order accu-
rate at the zero level set. The results furthermore indicate a similar performance of the reinitialization schemes
RSU, CR-1 and CR-2 for this problem, which, however, is an artifact of the test case since the initial per-
turbed level set function is distributed very smoothly. The significantly enhanced accuracy and stability of
the constrained reinitialization schemes is demonstrated in Section 4.2, where level set advection and propa-
gation test cases are presented.

4.2. Advection and propagation test cases

In this section solutions of numerical experiments showing the stability and the enhanced accuracy of the
novel methods are discussed. For all computations the localized level set method is used. The narrow band B
extends seven cells on each side of the zero level set. Solutions on wider bands have been computed. They show
that all presented solutions are almost independent of the bandwidth. The level set function is reinitialized
after each time step and Eq. (29) is converged to machine accuracy. The purpose is to demonstrate the stability
and enhanced accuracy of the proposed methods even when the reinitialization is performed very frequently
and that the reinitialization procedure is independent of the number of iterations performed on Eq. (29). Note,
O(1)-0(10) iterations are usually sufficient to solve Eq. (29) when the level set function is reinitialized after
each time step.

4.2.1. Problem I: rotation of a slotted disk

First, the rotation of a slotted disk [17] is considered. A slot of width 5 and length 25 is cut out of a disk
centered at (x,y) = (50, 75) with a radius » = 15 in a computational domain Q : [0, 100] x [0, 100]. The slotted
disk is rotated under a velocity field (u,v) = (n/314(50 — y), n/314(x — 50)), such that a full revolution is
performed at ¢ = 628. A CFL number of 1.28 is used, which corresponds to a time step A7 = 1 on a 256> cell
grid.
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Fig. 7. Reinitialization of the level set function initialized by Eq. (37) into a signed distance function using CR-2 in a computational
domain Q : [-5,5] x [-5, 5] discretized by 1282 cells: (a) before the reinitialization; (b) after 10 iterations; (c) after 50 iterations; (d) after
150 iterations. Contours are evenly spaced by 0.5 and plotted in the range ¢ = {—3,...,3}. The colors correspond to the value of the level
set function ¢.

Table 1

Convergence of the reinitialization scheme proposed by Russo and Smereka [12] using different discretizations

Ay e;: RSC Order: RSC e;: RSU Order: RSU
10/64 2.000 x 1073 - 1.202 x 1072 -

10/128 4.958 x 107 2.0 2.974 x 107 2.0

10/256 1211 x 107 2.0 7.671 x 107 2.0

The level set function is initialized according to Eq. (37).

Table 2

Convergence of the constrained reinitialization schemes CR-1 and CR-2

Ay e;: CR-1 Order: CR-1 e;: CR-2 Order: CR-2
10/64 1.273 x 1073 - 1.202 x 1073 -

10/128 3.060 x 1074 2.1 2.863 x 1074 2.1

10/256 7.646 x 1073 2.0 7.178 x 1073 2.0

The level set function is initialized according to Eq. (37).
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Fig. 8. Convergence of different reinitialization schemes. The level set function is initialized by Eq. (37).

The results using the reinitialization scheme by Russo and Smereka [12] (RSU) and the two formulations
CR-1 and CR-2 of the new reinitialization scheme are compared in Figs. 9 and 10, where the solutions after 1,
2 and 3 full revolutions of the slotted disk are plotted. The plots in Figs. 9 and 10 are computed using the
third-order accurate spatial and temporal discretization UC;/RKj and the fifth-order accurate spatial and
third-order accurate temporal discretization UCs/RKj, respectively. The solutions using CR-1 and CR-2
are clearly more accurate than the RSU findings. After 3 revolutions, the slot has almost disappeared in
the RSU solutions and a significant area loss of the disk is apparent. In Table 3, the area loss, which is nearly
proportional to the number of revolutions, is juxtaposed for the solutions of the different discretization and
reinitialization schemes. Using CR-1 and CR-2 and UCs/RKj;, about 0.3% of the disk area is lost per revo-
lution, whereas the loss is up to 17 times larger in the RSU solutions. In Fig. 11(a), the mean displacement of
the zero level set determined by linear interpolation in the x and in the y direction is plotted over time for the
UC;s/RK; solutions. The displacement caused by CR-1 and CR-2 is roughly an order of magnitude smaller
than that by RSU, while Fig. 11(b) evidences the condition |V¢| = 1 to be equally well fulfilled by all schemes
for the cells in I'. The local anchoring of the zero level set in CR-2 provides a similar accuracy as the mini-
mization of the ¢, displacement via the least-squares method being used in CR-1.

Comparing the RSU results of the different discretizations UC;/RKj; and UCs/RKj; in Figs. 9, 10 and
Table 3 yields only a small difference between the solutions despite the considerable difference in the orders
of the discretization schemes. The CR-1 and CR-2 solutions, however, clearly improve when UCs/RKj is used
instead of UC;/RK; and the area loss is reduced by a factor of 2. Hence, the displacement of the zero level set
caused by the RSU reinitialization scheme dominates the higher accuracy of the UCs/RK; discretization,
thereby diminishing the quality of the solution. This is an important result, considering the fact that many
authors use higher-order methods to discretize the level set equation.

For a further investigation reference solutions have been computed using the reinitialization scheme

{ Gijp = bijn if Coyp €T,

- 39
(bl‘j,'{ = ¢} — At sgn(diji) (Ve ;4| — 1) otherwise. (39)
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Fig. 9. Problem 1: rotation of a slotted disk using the localized level set method on a 256> cell grid. Comparison of different reinitialization
schemes: (a—c) RSU; (d—-f) CR-1; (g-i) CR-2. UC;/RKj solutions are shown for 1 full revolution (a,d, g), 2 full revolutions (b,e,h) and 3
full revolutions (c,f,1) of the disk.

If the zero level set is recovered by linear interpolation, this scheme exactly preserves the interface but is unable
to restore |V¢| = 1 in I'. Using the solution based on this scheme as reference indicates in how far a different
